If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=64
We move all terms to the left:
3x^2-(64)=0
a = 3; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·3·(-64)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*3}=\frac{0-16\sqrt{3}}{6} =-\frac{16\sqrt{3}}{6} =-\frac{8\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*3}=\frac{0+16\sqrt{3}}{6} =\frac{16\sqrt{3}}{6} =\frac{8\sqrt{3}}{3} $
| 3×x^2=16 | | -5(3x-2)=35 | | 12x-8=6x+34 | | 3(y+8)=35 | | 27(t-938)=675 | | 12x^2=64 | | 180=9x-8+7x-4 | | 38+2v=94 | | 2x+4x+4-10=360 | | 5×x^2=500 | | 3p-13=20 | | 92=4(z+13) | | -52=h/9-58 | | r+8/5=5 | | z/7+-8=-12 | | 6u+6=78 | | 4p+28=100 | | 15x1/4=61/4 | | -4(f+4)=32 | | 7/51=29/x | | 3(r-84)=-3 | | 96=16k | | 6q-22=14 | | 4x-20=230 | | -18h(6+2=0 | | 6(n-84)=36 | | 7q-20=71 | | Yx1/4=13.5 | | 20=10(c-89) | | g/7-4=2 | | 2(x-3)/3-x-2/4=1 | | (2^5)^3=2n |